The PhysTEC website will be unavailable Friday evening through Saturday afternoon as electrical work occurs in the American Center of Physics server room. Down time will begin at 6PM Eastern Time on Friday. Service is expected to resume by 6PM on Saturday, July 30.

Supported SiteSupported Site Towson University (Elementary): Early Teaching Experience


  • Our early teaching (field experience) course for elementary education majors was reformed through the re-establishment of clear course goals, the coordination of the course and school partnerships by the project faculty, the creation of guiding principles of inquiry, the teaching of certain course sections by the project faculty, inquiry-focused instructor and mentor teacher workshops, and the creation and distribution of an inquiry-focused teaching resources CD-rom for course instructors.
  • The teaching structure of the field experience course was successfully redesigned such that the ~13-20 interns in any given section of the course are spread across a small number of classrooms in a single school; ideally, between four and six interns are placed in each science classroom. During the allotted teaching time, the classroom is broken into four to six groups of elementary students, with each small group being led through an inquiry-based science activity by a single intern.
  • After the reforms were implemented, when compared to baseline data, the field experience interns spent more time teaching (and less time observing), the interns more frequently taught modified science lessons (rather than teaching the official school lessons as-is), and the interns’ science lessons focused more frequently on scientific investigations and the communication of ideas (rather than scientific demonstrations, lectures, and the verification of ideas). Additionally, the interns’ attitudes and beliefs about science and science teaching shifted in a more positive direction.


  • Since Towson University offers as many as eight sections of the field experience each semester, the course has a fairly significant amount of instructor and mentor teacher turnover. Any reforms of our field experience course therefore involved strong coordination between multiple course sections, some of which were led by relatively inexperienced part-time instructors and/or mentor teachers.
  • The project obtained mixed results in its attempts to help the field experience instructors and mentor teachers develop a deep, shared understanding of standards-driven, inquiry-based science teaching; this was due to the fact that the project PIs had limited time for close interactions with mentor teachers and part-time faculty, and also due to the turnover associated with these positions,

Sustainability/Physics Department Buy-In

  • The course reforms will continue as long as funding and personnel are available for workshops and any follow-up coordination and communication.

Lessons Learned

  • The multiple-interns-per-classroom model for early teaching experiences works well. This “small group” teaching structure is one of the primary reasons for the success of our reformed course; this structure should serve as a useful model for other institutions attempting similar course reforms.
  • Inquiry-based science lessons can vary widely in their intent and structure, and yet still adhere to the basic principles of inquiry. Certain inquiry lessons might consist entirely of open-ended, evidence-based discussions, while others might hold to the more typical predict-experiment-discuss-conclude lesson plan format.
  • Expecting the interns’ science lessons to be almost completely inquiry-based across all course sections is an unrealistic goal. Interns’ science lessons arise from a complicated interaction between many different factors: the expectations of the university instructors, interns, and mentor teachers; the degree to which the university instructors, mentor teachers, and interns possessed a shared understanding of inquiry; the ability of the interns to put their inquiry teaching goals into practice; the practical constraints of elementary classrooms and the early teaching course (e.g., the availability of science materials); and other contextual/environmental factors, such as a school’s general stance toward inquiry.
  • Coordination across content, methods, and field experience courses leads to the highest potential for educational success. Ideally, in their content courses, the preservice teachers learn science content and reasoning skills through inquiry, while at the same time reflecting on and explicitly discussing the structure and value of inquiry-based instruction in their methods/field experience courses. This methods and science content is then reinforced by the interns’ inquiry-focused teaching experiences in the field experience course.
  • Providing quality, in-depth feedback on interns’ lesson plans and lesson implementation, while time-consuming, is critical to the success of an early teaching course. Feedback that is overly general does now allow interns to reflect on the important details and nuances of lesson planning and instruction – with the result that the interns are not supported in making substantial improvements in these areas.
  • Interns’ teaching reflections need to be heavily guided and focused. In the absence of specific guidelines, interns will often focus solely on whether students had fun, paid attention, and learned the basic concepts in the lesson. In an inquiry-focused field experience course, the interns should be directed to reflect on inquiry-specific aspects of their instruction, including the evolution of students’ ideas, the effectiveness of teacher guidance and group discussion, and the degree to which the lesson is driven by evidence-based reasoning.
  • It is possible, given the proper course structure, support, and feedback, for interns to experience a radical change in attitude toward science and science teaching after only a single semester. In our project, a significant number of interns left our reformed course with a sense that (1) science teaching is fun, interesting, and worthwhile, (2) inquiry is an effective method of science instruction, and (3) they are able to teach science effectively.
  • Due to a lack of post-workshop communication between the project team and the course instructors, our improvement efforts still resulted in some communication and coordination problems. As a result, the 2-day instructor workshop will be further improved by splitting it into two separate workshops: a short workshop held before the beginning of the semester and a second, more in-depth “in session” workshop held during the first few weeks of the semester.